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attention given to probes and drugs (Supplementary Table 2). 
Currently, more than 800 distinct probes were acquired from six 
different library sources; while drugs, extracted from five sources 
(Supplementary Table 2 and Supplementary Note 3), account for 
more than 11,000 compounds—5,700 of which are annotated as 
approved drugs. To ensure that various chemical forms (such as 
stereoisomers or salts) are assigned to only one unique compound, 
each compound in the P&D portal is converted into its standard-
ized form (Supplementary Note 2). However, for cases in which 
different stereoisomers show different biological impact, original 
forms still remain available.

To further support the identification of suitable chemical tools, 
the annotation of P&D compounds is enriched with additional 
data, such as the bioactivities, targets and pathways in which these 
compounds take part. These data, obtained from and linked back 
to various external sources (Supplementary Table 3), are organized 
through ontologies. This ensures consistency between sources and 
contributes to a high data enrichment. A query can be saved simply 
by bookmarking its URL, and registered users can create custom 
compound sets from the arbitrary combination of compounds 
stored in the P&D library (Supplementary Note 8).

The P&D portal is an up-to-date web resource with monthly 
updates that unifies various commercial and public bioactive com-
pound libraries. Through its flexible and powerful filtering system, 
it helps users identify high-quality chemical tools for use in chemi-
cal biology and drug discovery research.

Data availability statement.
The data on the Probes & Drugs portal are available under the 
Creative Commons 4.0 license and are available at https://www.
probes-drugs.org/data_sources. The code is available at https://
www.probes-drugs.org/tools. 

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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sCMOS noise-correction algorithm for 
microscopy images
To the Editor: Scientific complementary metal-oxide semiconduc-
tor (sCMOS) cameras are rapidly gaining popularity in the biologi-
cal sciences. The sCMOS sensor provides significant advances in 
imaging speed, sensitivity and field of view over traditional detec-
tors such as charge-coupled devices (CCD) or electron-multiplying 
CCDs (EMCCD)1,2. However, this sensor introduces pixel-depen-
dent noise; each pixel has its own noise statistics—primarily offset, 
gain and variance. Left uncorrected, this sCMOS-specific noise 
generates imaging artifacts and biases in quantification3. A suite of 
algorithms was developed to characterize this noise in each pixel 
and incorporate the noise statistics in the likelihood function for 
single-molecule localization3. However, these algorithms work 
exclusively on images with point objects such as in single-particle 
tracking or single-molecule-switching nanoscopy. No general algo-
rithm that works on conventional microscopy images exists. We 
developed such an algorithm that dramatically reduces sCMOS 
noise from microscopy images with arbitrary structures. We show 
that our new method corrects pixel-dependent noise in fluores-
cence microscopy using an sCMOS sensor, and this allows the sen-
sor’s performance to approach that of an ideal camera.

The fundamental challenge for sCMOS noise correction is the 
estimation of one of the two variables (with the sum of the vari-
ables known); each pixel from an sCMOS camera gives a digital 
count representing the sum of two variables given by photoelec-
trons and readout noise, which we consider to follow Poisson and 
Gaussian distributions, respectively3. In the case of detecting point 
emitters, our extra knowledge is that the photoelectrons form a dif-
fraction-limited spot modeled, for example, as a Gaussian function. 
Therefore, in spite of the pixel-dependent noise, we demonstrated 
that the sCMOS-specific maximum-likelihood estimator extracts 
molecular centers with precision at the theoretical limit3. With arbi-
trary structures, however, the assumption of single emitters is lost.

To develop a generalized noise-correction algorithm, we exploit-
ed the common property of microscopy images, the optical transfer 
function (OTF). The amplitude of the OTF, defined by the micro-
scope’s numerical aperture and the wavelength of detection, dictates 
the frequency-response limit of a microscope system4,5. Optical sig-
nal from the sample exists only within the frequency limit, while 
only the contribution from noise lies outside of this limit (Fig. 1a 
and Supplementary Notes 1–5). Assuming independent readout 
noise, we focus on minimizing the noise contribution while maxi-
mizing the likelihood of our image estimate to recover the underly-
ing signal buried under the readout noise (Fig. 1, Supplementary 
Fig. 1 and Supplementary Notes 6–8). To this end, we first extract 
the noise contribution of an image in Fourier space outside or near 
the theoretical OTF periphery, a conservative estimate of the effec-
tive cutoff frequency of a practical system (Supplementary Note 
9). Then, based on the sCMOS noise model—including the pixel-
dependent offset, gain and variance (see Supplementary Note 10 
for sensors with multiple readout units per pixel)—we calculate 
the likelihood function for the entire image. By minimizing the 
sum of the noise contribution in Fourier space and the negative 
log likelihood, we obtain the noise-corrected image (Fig. 1b and 
Supplementary Fig. 1). We find that the pixel-dependent noise is, 
to a large extent, undetectable in the recovered image (Fig. 1b–e, 
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copy techniques—for example, light-sheet microscopy, total internal 
reflection fluorescence microscopy, fluorescence resonance energy 
transfer microscopy, speckle microscopy, and conventional fluores-
cence imaging. The fundamental principle can be applied to other 
fields where a maximum cutoff frequency exists, such as astronomy 
and photonics. We hope that these fields can now benefit from the 
increased quantum efficiency, field of view and imaging speed of 
sCMOS cameras without compromising its quantitative detection. 

Data availability statement.
A sub-stack of  unprocessed data  used in  generat ing 
Supplementary Figure 3 and Supplementary Video 1 is includ-
ed in Supplementary Software. Additional data that support 
the findings of this study is available from the corresponding 
author upon request. The developed software package is avail-
able as Supplementary Software. Updated versions can be found 
at https://github.com/HuanglabPurdue/NCS. A Life Sciences 
Reporting Summary for this paper is available.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Supplementary Figs. 2 and 3, and Supplementary Video 1); and 
quantification based on the likelihood function shows that the cor-
rected image closely approaches the ideal one (see Supplementary 
Note 11 on effects of camera sampling rate). Intensity trace com-
parisons in fluorescence microscopy images of peroxisome mem-
brane protein and end-binding proteins (EB3) (both tagged with 
tdEos), and the time series of F-actin tagged with SiR-actin, show a 
significant reduction of pixel fluctuation while keeping the original 
signal level intact (Supplementary Figs. 2 and 3, Supplementary 
Videos 1 and 2 and Supplementary Methods). Because our 
algorithm combines the noise and the likelihood for minimiza-
tion, it minimizes the noise fluctuation while maintaining the 
underlying expected photon count and resolution of the image 
(Supplementary Figs. 2, 4–6 and Supplementary Notes 12–14). 
To demonstrate the correction over the entire field of view, we cal-
culated the temporal fluctuation of individual pixels from a time 
series. We noticed that the high-readout noise pixels, the hallmark 
feature of sCMOS images, are absent throughout the entire field of 
view (Fig. 1c,d and Supplementary Figs. 2, 3 and 6).

The developed algorithm (Supplementary Software and 
Supplementary Note 15) can generally be applied to sCMOS-based 
detection and quantitative analysis in a broad spectrum of micros-
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Figure 1 | Concept and results of noise-correction algorithm for sCMOS 
camera. (a) Simulated raw sCMOS image and its components in Fourier 
space. The inlet image shows the variance map (vmap) of the readout noise. 
The image in Fourier space consists of contributions (contri.) from both 
noise and signal. Color map of variance map linearly scales from 2.8 to 
2,000 camera count squared (ADU2). (b) The noise-corrected image of the 
sCMOS image in a. (c) Temporal (temp.) pixel fluctuation map (s.d. in each 
pixel over time) over 400 sCMOS frames from experimental data. Color map 
indicates low (s.d. 1.5 ADU) to high (s.d. 8 ADU) temporal fluctuation per 
pixel. (d) Temporal pixel fluctuation map over 400 noise-corrected images 
of the sCMOS frames in c. (e) Zoomed-in images of selected subregions i and 
ii in c and d. The inlet images are the variance maps of the corresponding 
subregions showing the correlation with pixels with high temporal 
fluctuation in raw sCMOS frames. *, raw sCMOS frames are corrected by 
sCMOS gain and offset maps to facilitate visual comparison.
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